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• All cells of a multi-cellular organism contain
essentially the same DNA

• Cells differ in function based on the spectra of
which genes are expressed and the level of
expression

• Proteins do the work of cells and gene expression
determines the intra-cellular concentration of
proteins

• mRNA is an intermediate product of gene
expression; a gene is transcribed into a mRNA
molecule which is then translated into a protein
molecule
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Gene Expression Microarrays

• Permit simultaneous evaluation of expression
levels of thousands of genes

• Main platforms
– cDNA arrays (glass slide)

• Schena et al., Science, 1995

– Oligo arrays (glass wafer – “chip”)
• Lockhart et al., Nature Biotechnology, 1996

• Affymetrix website (http://www.affymetrix.com)

– Nylon filter arrays
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cDNA Array
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cDNA Arrays

• Each gene represented by one spot
(occasionally multiple)

• Two-color (two-channel) system
– Two colors represent the two samples

competitively hybridized

– Each spot has “red” and “green” measurements
associated with it
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[Affymetrix] Hybridization
Oligo Array
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Oligo Array:  Assay procedure

(Figure 1 from Lockhart et al., Nature Biotechnology, 1996)
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Oligo Arrays:  Perfect Match - Mismatch Probe Pairs

(Figure 2 from Schadt et al., Journal of Cellular Biochemistry, 2000)
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Oligo Arrays

• Single sample hybridized to each array

• Each gene represented by a “probe set”
– One probe type per array “cell”

– Typical probe is a 25-mer oligo

– 11-20 PM:MM pairs per probe set
(PM = perfect match, MM = mismatch)
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Image of a Scanned Affymetrix Gene Chip
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• Biological Heterogeneity in Population

• Specimen Collection/ Handling Effects
– Tumor: surgical bx, FNA

– Cell Line: culture condition, confluence
level

• Biological Heterogeneity in Specimen

• RNA extraction

• RNA amplification

• Fluor labeling

• Hybridization

• Scanning
– PMT voltage

– laser power

Sources of Variability
(cDNA Array Example)

(Geschwind, Nature Reviews Neuroscience, 2001)
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Slide Quality
A “good” quality cDNA array
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cDNA Arrays: Slide Quality

Scratch? Bubble

Edge effect Background haze
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cDNA Arrays:  Spot Quality

Poorly defined borders Large holes

Dust specsSaturated spot
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Oligo Arrays:  Quality problems due to debris

(Figure 1 from Schadt et al., Journal of Cellular Biochemistry, 2000)
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cDNA Arrays:  Image Processing

• Segmentation

• Background correction & signal calculation

• Spot flagging criteria

• Gene-level summaries
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cDNA Arrays:  Segmentation

• Segmentation - separation of feature (F)
from background (B) for each spot.

(See software documentation)

• Summary measures computed for F
– Intensity: mean or median over pixels
– Additional measures: SD, # pixels (size)



23

cDNA Arrays:
Background Correction &

Signal Calculation

• No background correction
Signal = F intensity

• Local background correction
Signal = F intensity - Blocal

• Regional background correction
Signal = F intensity - Bregional
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cDNA Arrays:
Flagging Spots for Exclusion

• F

• F-B

• F/B

• (F-B)/SD(B)

• Spot Size

A spot is excluded from analysis if “signal” or “signal-
to-noise” measure(s) at that spot fail to exceed a
threshold.  Several criteria can be used:
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Excluding Entire Arrays or Regions

• Too many spots flagged

• Narrow range of intensities

• Uniformly low signals



26

cDNA Arrays:
Gene-level Summaries

• Model-based methods
– Work directly on signals from two channels

(two colors)

• Ratio methods
– Red signal/Green signal
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Oligo Arrays:  Image Processing

• Grid alignment to probe cells
• Summarize over probe sets to get gene

expression indices
– Detection calls - present/absent

See Affymetrix documentation:
• Affymetrix website (http://www.affymetrix.com)
• Affymetrix Microarray Suite User Guide
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Oligo Arrays:
Probe Set (Gene) Summaries

• AvDiffi = Σ(PMij-MMij)/ni for each probe set i
(original Affymetrix algorithm)

• MBEIi = θi estimated from
PMij- MMij = θi φj + εij  ⇒  weighted average difference
(Model-Based Expression Index, Li and Wong, PNAS, 2001)

• Other algorithms – e.g. address issues of negative
or outlier differences
– Corrected or global backgrounds, robust measures, etc.

• “New” Affymetrix algorithm
• Irizarry et al., 2002

(http://biosun01.biostat.jhsph.edu/~ririzarr/papers)

– PM only (Naef et al. referenced in Irizarry et al., 2002)
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Need for Normalization for
cDNA Array Data

• Unequal incorporation of labels

– green better than red

• Unequal amounts of sample

• Unequal PMT voltage
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Normalization Methods for
cDNA Array Data

• Model-based methods
– Normalization incorporated into model

• Ratio-based methods
– Median (or Mean) Centering Method
– Lowess Method
– Multitude of other methods

Chen et al., Journal of Biomedical Optics, 1997
Yang et al. (http://oz.berkeley.edu/users/terry/zarray)

– Scaling factors, separately by printer pin, etc.
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Median (or Mean) Centering

Subtract median or mean log-ratio (computed over all genes
on the slide or only over housekeeping genes) from each 
log-ratio. 

In plot of log(red signal)
versus log(green signal), if 
point scatter is parallel to 
45° line, adjust intercept to 0.

MCF7 vs MCF10A, Expt. 3
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Lowess Normalization: M vs A plots
Yang et al. (http://oz.berkeley.edu/users/terry/zarray)

M vs A with Lowess Smooth, Expt. 22

A=(log2(GREEN signal)+log2(RED signal))/2
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MCF7 vs MCF10A, Expt. 22
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M = log2(GREEN signal)-log2(RED signal) 
A=(log2(GREEN signal)+log2(RED signal))/2
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Normalization for Oligo Arrays

• Need
– Variations in amount of sample or

environmental conditions
– Variations in chip, hybridization, scanning

• Methods
– Median, lowess, quantile adjustments, . . .
– Across probe cells or across genes summaries?
– Adjust to fixed value or to “reference” array
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Filtering Genes

• “Bad” values on too many arrays.

• Not differentially expressed across arrays.

– Variance (assumes approx. normality)

Let s2
i = sample variance of gene i (log) measurements

across n arrays; i = 1, 2, . . ., k.

Exclude gene i if

(n-1) s2
i < χ2(1- α, n-1)×median(s2

1, s2
2, . . ., s2

k).

– Fold difference

Examples: Max/Min < 3 or 4

(95th percentile/5th percentile) < 2 or 3
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Design and Analysis Methods Should
Be Tailored to Study Objectives

• Class Comparison (supervised)
– For predetermined classes, establish whether gene

expression profiles differ, and identify genes
responsible for differences

• Class Discovery (unsupervised)
– Discover clusters among specimens or among genes

• Class Prediction (supervised)
– Prediction of phenotype using information from gene

expression profile
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Class Comparison Examples

• Establish that expression profiles differ
between two histologic types of cancer

• Identify genes whose expression level is
altered by exposure of cells to an
experimental drug
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Class Discovery Examples

• Discover previously unrecognized subtypes
of lymphoma

• Identify co-regulated genes
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Class Prediction Examples

• Predict from expression profiles which
patients are likely to experience severe
toxicity from a new drug versus who will
tolerate it well

• Predict which breast cancer patients will
relapse within two years of diagnosis versus
who will remain disease free
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Design Considerations

• Controls

• Levels of replication

• Allocation of samples to (cDNA) array
experiments
– Kerr and Churchill, Biostatistics, 2001

– Dobbin and Simon (http://linus.nci.nih.gov/~brb)
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Controls

• Multiple clones (cDNA arrays) or probe
sets (oligo arrays) for same gene spotted on
array

• Spiked controls (e.g. yeast or E. coli)

• Reverse fluor experiments (cDNA arrays)
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cDNA Arrays:
Reverse Fluor Experiments

Forward vs -Reverse logRatio
 MCF7 vs MCF10A

Avg. of 7 forward logRatios
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Levels of Replication

• RNA sample divided into multiple aliquots

• Multiple RNA samples from a specimen

• Multiple subjects from population(s)
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Levels of Replication

• For comparing classes, replication of
samples should generally be at the “subject”
level because we want to make inference to
the population of “subjects”, not to the
population of sub-samples of a single
biological specimen.
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Class Comparison:
Allocation of Specimens to
cDNA Array Experiments

• Reference Design

• Loop Design
– Kerr and Churchill, Biostatistics, 2001

• Block Design
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Reference Design

A1

R

A2 B1 B2

R R R

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

R = aliquot from reference pool

Bi = ith specimen from class B
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Loop Design

A1

A2

B1 A2 B2

B1 B2 A1

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = aliquot from ith specimen from class A

Bi = aliquot from ith specimen from class B

(Requires two aliquots per specimen)
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Block Design

A1

A2

B2 A3 B4

B1 B3 A4

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
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Comparison of Designs

• For class discovery, a Reference design is
preferable because of large gains in cluster
performance.

• For class comparisons . . .
– With a fixed number of arrays, Block design is more

efficient than Loop or Reference design, but Block
design precludes clustering.

– With a fixed number of specimens, Reference design is
more efficient than Loop or Block design when intra-
class variance is “large”.
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Sample Selection

• Experimental Samples
– A random sample from the population under

investigation?  Biases?
– How many samples are needed?

• Reference Sample (cDNA array experiments using
reference design)
– In most cases, does not have to be biologically relevant.

• Expression of most genes, but not too high.
• Same for every array

– Other situations exist (e.g., matched normal & cancer)
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Sample Size Planning

• No comprehensive method for planning sample
size exists for gene expression profiling studies.

• In lieu of such a method…
– Plan sample size based on comparisons of two classes

involving a single gene.

– Make adjustments for the number of genes that are
examined.
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• Total sample size when comparing two equal sized,
independent groups:

n = 4σ2(zα/2 + zβ)2/δ2

where  δ = mean difference between classes
 σ = standard deviation
 zα/2, zβ = standard normal percentiles

• Choose  α small, e.g.  α = .001
• Alternative formulas for unequal, paired, or multiple

groups

Sample Size Planning
GOAL: Identify genes differentially expressed in a
comparison of pre-defined classes of specimens.
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Analysis Strategies for Class
Comparisons

• Model-based methods

• Global tests

• Multiple testing procedures to identify
differentially expressed genes
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Model-based Methods for cDNA Arrays

• Kerr et al., Journal of Computational
Biology, 2000

• Lee et al., PNAS, 2000

• Kerr and Churchill, Biostatistics, 2001

• Wolfinger et al., Journal of Computational
Biology, 2001
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Model-based Methods for Analysis of
cDNA Array Data:

ANOVA for Logarithm of Background
Adjusted Intensities

• First Stage Normalization Model
– Array

– Dye

– Array * Dye

– Variety (Class)

– Sample within variety
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ANOVA for Logarithm of
Background Adjusted Intensities

• Gene-Variety Second Stage Models Fitted
to Residuals from Normalization Model
– Gene
– Array by Gene
– Variety by Gene
– Sample within Variety by Gene

• Gene-Variety Models Fitted Separately by
Gene
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Gene-Variety Model

• r = Gg + AGag + VGvg + SGsg + e

• e ~ N(0,sg
2)

• Efficiency of design based on variance of
estimators of VGig-VGjg

• To study efficiency, assume SGsg~N(mg,tg
2)
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Global Tests for Differences
Between Classes

• Choice of summary measure of difference
Examples:

- Sum of squared univariate t-statistics

- Number of genes univariately significant at 0.001
level

• Statistical testing by permutation test
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Multiple testing procedures:
Identifying differentially expressed genes
while controlling for false discoveries*

• Expected Number of False Discoveries – E(FD)
• Expected Proportion of False Discoveries –

E(FDP) = False Discovery Rate (FDR)
• Actual Number of False Discoveries - FD
• Actual Proportion of False Discoveries - FDP

*False discovery = declare gene as differentially
expressed (reject test) when in truth it is not
differentially expressed
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Simple Procedures

• Control E(FD) ≤ u
– Conduct each of k tests at level u/k

• Control E(FDP) ≤ γ
– FDR procedure

• Bonferroni control of familywise error (FWE) rate
at level α
– Conduct each of k tests at level α/k
– At least (1-α)100% confident that FD = 0
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False Discovery Rate (FDR)

• FDR = Expected proportion of false
discoveries among the tests declared
significant

• Procedure* to control FDR < γ:
– Order p-values P(1)< P(2)< . . . < P(k)

– Reject tests 1, 2, . . ., i where i is the largest
index satisfying P(i)k < iγ

– Control not proven in all cases

*Attributed to Eklund by Seeger (1968), studied by Benjamini 
and Hochberg (1995) and Yekutieli and Benjamini (submitted)
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Problems With Simple Procedures

• Bonferroni control of FWE is very
conservative

• Controlling expected number or proportion
of false discoveries may not provide
adequate control on actual number or
proportion
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Additional Procedures

• “SAM”  - Significance Analysis of Microarrays
– Tusher et al., PNAS, 2001
– Estimate FDR
– Statistical properties unclear

• Empirical Bayes
– Efron et al., JASA, 2001
– Related to FDR

• Step-down permutation procedures
– Korn et al., 2001 (http://linus.nci.nih.gov/~brb)

– Control number or proportion of false discoveries
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Step-down Permutation Procedures
(Korn et al., 2001)

Want procedures to allow statements like:
FD Procedure: “We are 95% confident that the

(actual) number of false discoveries is no
greater than 2.”

FDP Procedure:  “We are 95% confident that the
(actual) proportion of false discoveries does not
exceed .10.”
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Step-down Permutation Procedures

• “Step-down”
– Sequential testing (smallest to largest p-value),

adjusting critical values as you go
– Less conservative than uniform critical value

methods

• Permutation-based
– Independent of distribution
– Preserve/exploit correlation among tests by

permuting each profile as a unit
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FD Algorithm
To be (1-α)100% confident that the (actual)

number of false discoveries is ≤ u:

• Automatically reject H(1), H(2), . . ., H(u).

• For r > u, having rejected H(r-1), reject H(r) if
P(r) < y(α)r, u.  (See Korn et al., 2001 for
definitions of critical values.)

• Once a hypothesis is not rejected, all further
hypotheses are not rejected.
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Notes

• FD procedure with u = 0 reduces to step-
down FWE procedure (Westfall and Young,
1993)

• Ties can be handled

• Computationally intensive – approximations
possible

• Allowing a few errors may buy a lot in
power to detect “true discoveries”
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FDP Algorithm
To be (1-α)100% confident that the (actual)

proportion of false discoveries is ≤ γ:

• Reject H(1) if P(1)< y(α)K, 0.
• Having rejected H(r-1), reject H(r) if either
   |[rγ]| > |[(r-1)γ]| or P(r) < y(α)r, |[rγ]|.
(See Korn et al., 2001 for definitions of critical

values.)

Once a hypothesis is not rejected, all further
hypotheses are not rejected.
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Notes

• Proof of FDP procedure requires asymptotic
arguments, so control is only approximate
for small samples

• Ties can be handled
• Computationally intensive – approximations

possible
• Allowing a small proportion of errors may

buy a lot in power to detect “true
discoveries”
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Class Discovery
• Cluster analysis algorithms (Gordon, 1999)

– Hierarchical
– K-means
– Self-Organizing Maps
– Maximum likelihood/mixture models
– Multitude of others

• Graphical displays
– Hierarchical clustering

• Dendrogram
• “Ordered” color image plot

– Multidimensional scaling plot
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Hierarchical Agglomerative
Clustering Algorithm

• Merge two closest observations into a cluster.
– How is distance between individual observations

measured?

• Continue merging closest clusters/observations.
– How is distance between clusters measured?

• Average linkage

• Complete linkage

• Single linkage
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Common Distance Metrics for
Hierarchical Clustering

• Euclidean distance
– Measures absolute distance

(square root of sum of
squared differences)

• 1-Correlation
– Large values reflect lack of

linear association (pattern
dissimilarity)
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Linkage Methods
• Average Linkage

– Merge clusters whose average distance between all
pairs of items (one item from each cluster) is minimized

– Particularly sensitive to distance metric

• Complete Linkage
– Merge clusters to minimize the maximum distance

within any resulting cluster
– Tends to produce compact clusters

• Single Linkage
– Merge clusters at minimum distance from one another
– Prone to “chaining” and sensitive to noise
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Interpretation of
Cluster Analysis Results

• Cluster analyses always produce cluster structure
– Where to “cut” the dendrogram?

• Different clustering algorithms may find different
structure using the same data.

• Which clusters do we believe?
– Reproducible between methods
– Reproducible within a method
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Assessing Cluster Reproducibility:
 Data Perturbation Methods

• Most believable clusters are those that persist
given small perturbations of the data.

– Perturbations represent an anticipated level of noise in
gene expression measurements.

– Perturbed data sets are generated by adding random
errors to each original data point.

• McShane et al. (http://linus.nci.nih.gov/~brb) –
    Gaussian errors
• Kerr and Churchill (PNAS, 2001) – Bootstrap residual errors
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• Perturb the log-gene measurements and re-cluster.

• For each original cluster:

– Compute the proportion of pairs of elements that occur in the
cluster in the original clustering and whose elements remain
together in the perturbed data clustering when cutting
dendrogram at the same level k.

– Average the cluster-specific proportions over many perturbed
data sets to get an R-index for each cluster.

Assessing Cluster Reproducibility:
 Data Perturbation Methods
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k = 3

}

c1

}

c2

}

c3

Perturbed Data

}
p1

}
p2

}

p3

Original Data

R-index Example

• 3 out of 3 pairs in c1 remain together in perturbed clustering.

• 3 out of 3 in c2 remain together.

• 1 out of 3 in c3 remain together.

• R-index = (3 + 3 + 1)/(3 + 3 + 3) = 0.78

x1  x2  x3      y1  y2   y3    z1  z2   z3 x1  x2   x3     y1  y2   y3  z3     z1  z2
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Cluster Reproducibility: Melanoma
(Bittner et al., Nature, 2000)

Expression profiles of 31 melanomas were examined with a variety of class 
discovery methods. A group of 19 melanomas consistently clustered together.

For hierarchical clustering, the
cluster of interest had an
R-index = 1.0.

fi highly reproducible

Melanomas in the 19 element
cluster tended to have:

• reduced invasiveness
• reduced motility
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Estimating the Number of Clusters

• Global test of “no clustering” followed by
comparison of R-index and D-index over many
cuts in the original dendrogram (McShane et al.,
http://linus.nci.nih.gov/~brb, to appear in Bioinformatics)

• Gap Statistic (Tibshirani et al., JRSS B, 2002)

• Comparisons of methods for estimating number of
clusters in small dimension cases (Milligan and Cooper,
Psychometrika, 1985)
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Graphical Displays:
Ordered Color Image Plot

Hierarchical Clustering of Lymphoma Data (Alizadeh et al., Nature, 2000)
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• High-dimensional (e.g. 5000-D) data points are
represented in a lower-dimensional space (e.g. 3-D)

– Principal components or optimization methods

– Depends only on pairwise distances (Euclidean, 1-
correlation, . . .)  between points

– Relative distances

– “Relationships” need not be well-separated clusters

Graphical Displays:
Multidimensional Scaling (MDS)
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MDS: Breast Tumor and FNA Samples

(Assersohn et al., Clinical Cancer Research, 2002)

Color = Patient
Large circle = Tumor
Small circle = FNA
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MDS Representation of Total and Amplified
RNA Samples from Same Cell Line

(Fang et al., unpublished)

• There appears to be a difference between total and
amplified samples.

• Variability among amplified samples appears larger than
variability among total samples.
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Class Prediction

• Predict membership of a specimen into pre-defined
classes
– mutation status

– poor/good responders

– long-term/short-term survival
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Selection of a Class Prediction Method
“Note that when classifying samples, we are confronted with a problem that there
are many more attributes (genes) than objects (samples) that we are trying to
classify. This makes it always possible to find a perfect discriminator if we are not
careful in restricting the complexity of the permitted classifiers. To avoid this
problem we must look for very simple classifiers, compromising between simplicity
and classification accuracy.” (Brazma & Vilo, FEBS Letters, 2000)

Weighted voting method: distinguished between subtypes of human acute
leukemia (Golub et al., Science, 1999)

Support vector machines: classified ovarian tissue as normal or cancerous
(Furey et al., Bioinformatics, 2000)

Clustering-based classification: applied to above data sets and others (Ben-
Dor et al., J Comput Biol, 2000)

Compound covariate prediction: distinguished between mutation positive
and negative breast cancers (Hedenfalk et al., NEJM, 2001)
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The Compound Covariate Predictor (CCP)
• We consider only genes that are differentially expressed between

the two groups (using a two-sample t-test with small α).

• The CCP
– Motivated by J. Tukey, Controlled Clinical Trials, 1993

– Simple approach that may serve better than complex multivariate
analysis

– A compound covariate is built from the basic covariates (log-ratios)

tj is the two-sample t-statistic for gene j.

xij is the log-ratio measure of sample i for gene j.

Sum is over all differentially expressed genes.

• Threshold of classification: midpoint of the CCP means for the two
classes.

∑=
j

ijji xtCCP
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Non-Cross-Validated Prediction

Cross-Validated Prediction (Leave-One-Out Method)

1. Prediction rule is built using full data set.
2. Rule is applied to each specimen for class

prediction.

1. Full data set is divided into training and
test sets (test set contains 1 specimen).

2. Prediction rule is built using the training
set.

3. Rule is applied to the specimen in the
test set for class prediction.

4. Process is repeated until each specimen
has appeared once in the test set.
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Prediction on Simulated Null Data

Generation of Gene Expression Profiles

• 14 specimens (Pi is the expression profile for specimen i)

• Log-ratio measurements on 6000 genes

• Pi ~ MVN(0, I6000)

• Can we distinguish between the first 7 specimens (Class 1) and the last 7
(Class 2)?

Prediction Method

• Compound covariate prediction

• Compound covariate built from the log-ratios of the 10 most differentially
expressed genes.
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Percentage of simulated data sets
with m or fewer misclassifications

m
Non-cross-validated

class prediction
Cross-validated
class prediction

0 99.85 0.60
1 100.00 2.70
2 100.00 6.20
3 100.00 11.20
4 100.00 16.90
5 100.00 24.25
6 100.00 34.00
7 100.00 42.55
8 100.00 53.85
9 100.00 63.60

10 100.00 74.55
11 100.00 83.50
12 100.00 91.15
13 100.00 96.85
14 100.00 100.00

From Radmacher et al., Journal of Computational Biology (in press)
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Gene-Expression Profiles in
Hereditary Breast Cancer

( Hedenfalk et al., NEJM, 2001)

• Breast tumors studied:
7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of
3226 genes for each tumor
after initial data filtering

cDNA Microarrays
Parallel Gene Expression Analysis 

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from
BRCA2– cancers based solely on their gene expression profiles?
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Classification of hereditary breast cancers with the compound covariate predictor

Class labels

Number of
differentially

expressed genes
m = number of

misclassifications

Proportion of random
permutations with m or
fewer misclassifications

BRCA1+ vs. BRCA1− 9 1 (0 BRCA1+, 1 BRCA1−) 0.004
BRCA2+ vs. BRCA2− 11 4 (3 BRCA2+, 1 BRCA2−) 0.043
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Validation of Predictor on
Independent Data

• Potential pitfalls of estimated prediction accuracy
from leave-one-out cross-validation on a single
data set
– High variance of LOO CV error rate for small samples

– Peculiarities of the training set may influence the
prediction rule

• Independent data set for validation
– Should be fairly large (e.g., as big as training set)

– Similar proportions of specimens for the classes as exist
in the population
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Summary Remarks
• Data quality assessment and pre-processing are important.

• Different study objectives will require different statistical
analysis approaches.

• Different analysis methods may produce different results.
Thoughtful application of multiple analysis methods may be
required.

• Chances for spurious findings are enormous, and validation of
any findings on larger independent collections of specimens will
be essential.

• Analysis tools are not an adequate substitute for collaboration
with professional data analysts.
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• NCI:  http://linus.nci.nih.gov/BRB-ArrayTools.html

– Excel front end, R backend

– Data is input as Excel worksheets

• Berkeley: http://www.stat.berkeley.edu/users/terry/zarray/Html/index.html

• Harvard: http://www.dchip.org

• Hopkins: http://biosun01.biostat.jhsph.edu/~ririzarr/Raffy/

• Jackson Labs: http://www.jax.org/research/churchill/

• Stanford: http://genome-www5.stanford.edu/MicroArray/SMD/restech.html

• MANY OTHERS referenced in papers

Software Availability
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